
Advanced Mathematical Models & Applications

Vol.4, No.3, 2019, pp.232-242

GRAVITATIONAL SEARCH ALGORITHM SOLUTIONS OF INITIAL
VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Korhan Günel∗, İclal Gör
Department of Mathematics, Faculty of Arts and Sciences, Aydın Adnan Menderes University,
Turkey

Abstract. In this study, a trial solution satisfying the initial conditions of a differential equation is defined.

Next, a cost function is specified regarding with the trial solution depending on the parameters of a feed-forward

neural network. In the training stage of the neural network, Gravitational Search Algorithm (GSA) is used as

a global optimization method for minimizing the network cost. The main contributions of our paper are getting

the numerical solution of Initial Value Problems (IVPs) without derivative and obtaining the solution at any

point in the interval by taking advantages of using GSA and Neural Networks(NNs) together. GSA trains the

NNs without derivation knowledge using the inputs obtained by the discretization of the domain. However, NNs

produce the numerical solutions at any point of problem domain without depending on the step size, which is

used for discretization stage. In numerical implementations of IVPs, the obtained results are discussed comparing

with the analytical solution, forward Euler and Runge-Kutta 4 methods.

Keywords: feed-forward neural network, gravitational search algorithm, GSA, global optimization, initial value

problems, IVPs.

AMS Subject Classification: 65L05, 68T05, 82C32, 82C80.

Corresponding author: Korhan, Günel, Aydın Adnan Menderes University, Faculty of Arts and Sciences,

Department of Mathematics, Turkey, Tel: +90 (256) 218 20 00, e-mail: kgunel@adu.edu.tr

Received: 15 August 2019; Revised: 02 September 2019; Accepted: 23 November 2019;

Published: 21 December 2019.

1 Introduction

Differential Equations (DEs) are powerful tools for modeling real world problems facing the
scientific and industrial community. However, some differential equations are complex and
solutions of them could not be obtained analytically in a continuous space. In this case, the
approximate solutions are looked for in an interval, which is discretized into a sequence of real
numbers as nodes. Main disadvantages of the numerical methods are giving the discrete solution
at the nodes of the interval. Interpolation methods are used to obtain the numerical solution at
the points not belonging to the discretaziton set of the interval.

Artificial neural networks (ANNs) are alternative approaches to solve DEs at any points
of the search space. In the literature, Lee and Kang (1990) presented the first study about
solving DEs with ANNs (Lee & Kang, 1990). They used the finite difference techniques for the
discretization of DEs, transformed the equations into a cost function and minimize the cost
function with neural minimization algorithm utilizing Hopfield Neural Network. Since then,
neural network models are varied for solving both Ordinary Differential Equations (ODEs)
and Partial Differential Equations (PDEs) in different forms with some initial and boundary
conditions. In this field, a numerous studies are encountered in last two decades. Some of them
are summarized in the following.

Meade and Fernandez (1994) demonstrated that feedforward neural network can solve lin-

232



K. GÜNEL, İ. GÖR: GSA SOLUTIONS OF IVPs FOR ODEs

ear and nonlinear ODEs using B1-splines as basis function in ANN (Meade & Fernandez, 1994).
Malek and Beidokhti (2006) constructed a hybrid method including feed forward network trained
by optimization technique based on Nelder-Mead method in order to solve first and high order
ODEs (Malek & Beidokhti, 2006). In their work, they got an approximated solution in the neig-
bourhood of search space. Li-ying, Hui and Zhe-zhao (2007) proposed a method for solving initial
value problems (IVPs) by neural networks based on the cosine basis functions (Li-ying et al.,
2007). They compared obtained solutions and results with using Euler and Heun method. Fojdl
and Brause (2008) used the error as subjective error based on Total Least Square Error (TLSE)
for the solution of ODEs (Fojdl & Brause, 2008).

Some researchers focus on the numerical solution of special types of DEs. Otadi and Mosleh
(2011) solved Riccati differential equations by two layer feed forward neural network trained
by Gradient Descent Algorithm (Otadi & Mosleh, 2011). Mall and Chakraverty (2014) used
Chebyshev Neural Network model for the solution of homogeneous and nonhomogeneous Lane-
Emden equations (Mall & Chakraverty, 2014). In their another article, Mall and Chakraverty
(2015) solved singular IVPs of Emden-Fowler type equations with Chebyshev Neural Network
(Mall & Chakraverty, 2015). Raja et al. (2014) presented articles about the numerical solution
of one and two dimensional Bratu-type DEs (Raja & Ahmad, 2014; Raja et al., 2014).

In the literature, some articles are prepared using global optimization techniques for the
numerical solutions of special types of DEs. Raja (2014) solved BVPs of the second order
Pantography functional DEs using ANNs and optimization techniques as simulated annealing
(SA), pattern search (PS), genetic algorithms (GAs), active set (AS) and their combinations
(Raja, 2014a). Raja (2014) optimized the ANNs solution of Troesch’s problem with particle
swarm optimization (PSO), active set (AS) and PSO combined with AS (PSO - AS) optimization
methods (Raja, 2014b).

Kumar and Yadav (2011) presented an extensive survey about the solution of differen-
tial equations with using Multi-Layer Perceptron (MLP) and Radial Basis Function Networks
(RBFN) (Kumar & Yadav, 2011). Rudd, Muro and Ferrari (2014) presented a constrained
backpropogation (CPROP) algorithm for the solution of nonlinear elliptic and parabolic Partial
Differential Equations (PDEs) (Rudd et al., 2014). Rudd and Ferrari (2015) proposed a con-
strained integration (CINT) method so as to solve IVPs of PDEs (Rudd & Ferrari, 2015). Zjavka
and Pedrycz (2016) constructed general PDEs with polynomial and ANNs for the solution of
PDEs (Zjavka & Pedrycz, 2016). Mall and Chakraverty (2016) got the numerical solution of
first, second ODEs and systems of first ODEs with ANNs constructed by Legendre polynomials
(Mall & Chakraverty, 2016).

The studies including the types of differential equations such as fractional order Pakdaman et al.
(2017); Qu (2017), Bagley-Torvik equation Raja et al. (2017), fractional differential equations
of variable-order Zúñiga et al. (2017), high-dimensional parabolic partial differential equations
Weinan et al. (2017), Backward Stochastic differential equations Weinan et al. (2017) and Navier-
Stokes equations Sinchev et al. (2018) are samples that used the neural networks in the numerical
solutions of them. The difference from others and the original contribution of our method is to
use a population based method as heuristic optimization technique to train the neural network.

In this work, we solved the initial value problems with feed forward neural network trained by
a global optimization technique as Gravitational Search Algorithm (GSA). In the next section,
GSA is summarized. In the third section, the method based on a trial function depending on a
feed forward neural network solution of initial value problems is explained in detail. The fourth
section gives the experimental studies on different types of ODEs. The conclusions and further
studies are discussed in last section.

233



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.4, N.3, 2019

2 Gravitational Search Algorithm

Gravitational Search Algorithm (GSA) is a heuristic method which utilizes the theory of Newton
physics based on the law of gravity (Rashedi et al., 2009). In the search space, the solution of
the problem is investigated. Simply, GSA is a global optimization method based on population.
The population comprised agents having mass. The position of an agent shows the approximated
solution, and GSA is used to get optimal solution. Agents interact each other with using gravity
force and move another position according to their masses.

Now let have a system with agents having mass whose position is defined as given Eq. (1)

Xi = (x1i , x
2
i , ..., x

d
i , ..., x

n
i ), for i = 1, 2, ..., N (1)

where xdi is the position of i-th agent in the d-th dimension. In the time t, the force of i-th mass
to j-th mass is defined as given in Eq. (2).

F d
ij = G(t)

Mpi(t)×Mai(t)

Rij(t) + ϵ
(Xd

j (t)−Xd
i (t)) (2)

where Mai(t) shows the active gravitational mass related to agent j, Mpi(t) is the passive gravi-
tational mass for the agent i, G(t) is the gravitational constant at t-th time, ϵ is a small constant
and Rij(t) = ∥Xd

i (t), X
d
j (t)∥ is the Euclidian distance between two agents i and j.

The total force, F d
ij in Eq. (3), is defined as acting on agent i in a dimension d with using

randomly generated value in the interval [0, 1] defined as randj . The total force is composed of
d-th forces exerted from other agents.

F d
ij =

N∑
j=1,j ̸=i

F d
ij(t) (3)

Thus with using the law of motion, the acceleration of the agent i at t-th time in d-th direction
adi is calculated in Eq. (4).

adi =
F d
ij(t)

Mii(t)
(4)

where Mii(t) is the inertial mass of i-th agent. Hence, the next velocity and position of the
agent is calculated with using the acceleration of the agent as given in Eq. (5) and Eq. (6).

vdi (t+ 1) = randi × vdi (t) + adi (t) (5)

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (6)

The random value, randj , is used for giving the randomized characteristic to the search.
The gravitational constant G is initialized at the beginning and it will be reduced. In other

words, G is a function of initial value G0 at the time t in Eq. (7).

G(t) = G(G0, t) (7)

Fitness evaluation is used to calculate gravitational and inertia masses. If a mass is heavier, it
is more efficient than others. Furthermore, the heavier mass act slowly. The other masses move
towards the heaviest one. The gravitational and inertial masses are updated for Mai = Mpi =
Mii = Mi, i = 1, 2, ..., N with using Eq. (8) and Eq. (9).

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
(8)

Mi(t) =
mi(t)
n∑

j=1

mj(t)

(9)

234



K. GÜNEL, İ. GÖR: GSA SOLUTIONS OF IVPs FOR ODEs

where fiti(t) is the fitness value of the agent i at the time t. The best fitness function value,
best(t) and the worst fitness function value, worst(t) are calculated for a minimization problem
as in Eq. (10) and Eq. (11).

best(t) = minj∈1,2,...,Nfitj(t) (10)

worst(t) = maxj∈1,2,...,Nfitj(t) (11)

Briefly, the method can be summarized as follows. First of all, the initial population is
generated randomly. Then the fitness for each agent is evaluated. Gravitational constant, the
best and worst value of the fitness function value of the population are calculated. The next
step is the calculation mass and acceleration for each agents. Then, the velocities and positions
are updated. If the desired fitness value is reached depending on the stopping criterion, it is
assumed that the best solution is obtained. Otherwise, the fitness value is evaluated and the
other steps of GSA are repeated again until meeting the goal.

3 Numerical Solution of IVPs Using GSA

The initial value problem for the first order differential equation is defined as in Eq. (12).{
y′(t) = f(t, y(t)),
y(t0) = y0

(12)

In order to solve this IVP, the trial function approach is used. The trial function is defined as
yT (tj , p⃗) = y0+(t−t0)N(tj , p⃗) is the feed forward neural network solution such that p⃗ = p⃗(α⃗, β⃗, w⃗)

is the unknown parameters vector determined by GSA. α⃗, β⃗, w⃗ ∈ Rm where m is the number
of neurons in the hidden layer. Then, the solution of neural network N(tj , p⃗) is defined as

N(tj , p⃗) =
m∑
i=1

αiσ(zi) for the neuron zi = witj + βi where wi is the weight and βi is the bias

value for the input tj for 1 ≤ j ≤ n. The activation function is chosen as the sigmoid function

defined as σ(z) =
1

1 + exp(−z)
. The main reasons of this selection is that the sigmoid function

is a bounded, differentiable and real valued function, and it imitates the probability distribution
functions. Its first derivate has non-negative values at any point of problem domain. By this
way, the neural networks output can be specified the linear combinations of sigmoid functions
as a cumulative distribution function. In addition, it transforms the inputs to a bounded range
of the interval [0, 1]. Thus, the parameters of neural networks can be easily determined at the
training stage of neural net. Actually, a wide variety of sigmoid functions, such as logarithmic
sigmoid, tangent hyperbolic, tangent sigmoid etc., is preferred as an activation function within
different neural net topology based on the problem.

The feed forward neural network produces network error for each input in each iteration.
In order to minimize the total error, the network parameters are updated in the training stage.
After updating these parameters, the error is propagated over the whole network. In general,

the error of the network is calculated as E =
1

2

n∑
i=1

(dj − yj)
2 where dj is the desired output

and yj is the output of the network for the input tj . In this work, we use the cost function

as E =
1

n

n∑
i=1

(
∂yT
∂tj

− f(tj , yT (tj))

)2

to calculate the Mean Squared Error (MSE) where n is

the number of inputs belonging to the training set. To minimize the cost function, we must

determine
∂yT
∂tj

for the first order differential equations.

235



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.4, N.3, 2019

yT (tj , p⃗) = y0 + (t− t0)N(tj , p⃗) ⇒
∂yT
∂tj

= N(tj , p⃗) + tj
∂N(tj , p⃗)

∂tj

where
∂N(tj , p⃗)

∂tj
=

m∑
i=1

αiwiσ(zi)(1− σ(zi)).

The second order differential equation is given in the following form.
y′′(t) = f(t, y(t), y′(t)),
y(t0) = A
y′(t0) = B

(13)

Then the cost function defined as E =
1

n

n∑
i=1

(
∂2yT
∂t2j

− f

(
tj , yT (tj),

∂yT
∂tj

))2

to calculate MSE.

In order to get MSE, the second order partial derivatives of the trail function with respect to tj
must be determined as given in the following.

∂yT
∂tj

= N(tj , p⃗) + tj
∂N(tj , p⃗)

∂tj
⇒ ∂2yT

∂2tj
= 2

∂N(tj , p⃗)

∂tj
+ tj

∂2N(tj , p⃗)

∂t2j

where
∂2N(tj , p⃗)

∂t2j
=

m∑
i=1

αiwiσ(zi)(1− σ(zi))(1− 2σ(zi)).

For the solution of higher order initial value problems, the higher order partial derivations
of yT (tj) and N(tj , p⃗) with respect to tj must be evaluated in similar way. After constructing
the cost function, it is tried to minimize using GSA to determine the unknown parameters of
the network.

In the next section, we demonstrate how the method works with some examples. In the
numerical implementation, we solve different types of linear differential equations as homogenous,
nonhomogenous, and second order homogenous.

4 Numerical Implementation

In this section, we give some examples in order to show the numerical solution of initial value
problems using feed forward neural network trained by GSA. In the experiments, the elements

of the training set are generated with a fix step size, h > 0. The step size is halved as
h

2
for

the test set construction. In addition, obtained quadrature nodes belonging to the training set
are removed from the test set. Only the initial values are added to test set. Furthermore, the
neural network gives the solution at any points in the search space after training.

In our experiments, we use the parameters of GSA as shown in Table 1.

Table 1: Parameters in GSA algorithm

Number of agents 20

Number of neurons 5

Lower Bound -10

Upper Bound 10

Dimension of Search Space 15

Maximum iteration 1000, 3000, 5000

In order to get the performance of our approach, we compare the results with Euler and
Runge Kutta 4 (RK4) methods.

Example 1. {
y′(x) +

y

x+ 1
= 0, x ∈ [2, 3],

y(2) = 3
(14)

236



K. GÜNEL, İ. GÖR: GSA SOLUTIONS OF IVPs FOR ODEs

Figure 1: Numerical Solutions for training and test set of Example 1

Figure 2: Best cost function value obtained by GSA for Example Example 1

The exact solution of First Order Homogenous Linear Differential Equation given in Eq.

(14) is y =
9

x+ 1
. We get the numerical solution of Eq. (14) illustrated in Fig. 1 after 1000

iterations where the step size chosen as h = 0.1. Also, the best cost function value obtained by
GSA is given in Fig. 2.

The mean of MSEs with standard deviation for different step size is given for training set in
Table 2 and for test set in Table 3.

Table 2: Mean of MSEs for training set for Example 1.

Step size Number of iteration
(h) 1000 3000 5000

0.1 1.574 × 10−5 ± 3.879 × 10−5 1.498 × 10−6 ± 1.301 × 10−6 5.191 × 10−5 ± 1.596 × 10−4

0.05 8.609 × 10−6 ± 1.082 × 10−5 2.776 × 10−6 ± 2.877 × 10−6 1.288 × 10−6 ± 1.677 × 10−6

0.01 5.475 × 10−5 ± 8.516 × 10−5 2.355 × 10−5 ± 7.063 × 10−5 1.687 × 10−6 ± 1.451 × 10−6

Example 2. {
y′(x) + tan y = cos2(x), x ∈ [0, 1],
y(0) = 0

(15)

The exact solution of First Order Nonhomogenous Linear Differential Equation given in Eq.
(15) is
y = sinx cosx. After 1000 iterations using the step size h = 0.1, the numerical solution illus-
trated in Fig. 3 is obtained. Also, the best cost function value obtained by GSA can be seen in
Fig. 4.

237



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.4, N.3, 2019

Table 3: Mean of MSEs for test set for Example 1.

Step size Number of iteration
(h) 1000 3000 5000

0.1 1.508 × 10−5 ± 3.701 × 10−5 1.464 × 10−6 ± 1.271 × 10−6 4.995 × 10−5 ± 1.536 × 10−4

0.05 8.454 × 10−6 ± 1.060 × 10−5 2.720 × 10−6 ± 2.818 × 10−6 1.262 × 10−6 ± 1.643 × 10−6

0.01 5.488 × 10−5 ± 8.552 × 10−5 2.370 × 10−5 ± 7.111 × 10−5 1.679 × 10−6 ± 1.444 × 10−6

Figure 3: Numerical Solutions for training and test set of Example 2

Figure 4: Best cost function value obtained by GSA for Example Example 2

Figure 5: Numerical Solutions for training and test set of Example 3

238



K. GÜNEL, İ. GÖR: GSA SOLUTIONS OF IVPs FOR ODEs

Figure 6: Best cost function value obtained by GSA for Example Example 3

The mean of MSEs with standard deviation with different h values is given in Table 4 and
in Table 5 for training and test set, respectively.

Table 4: Mean of MSEs for training set for Example 2.

Step size Number of iteration
(h) 1000 3000 5000

0.1 1.172 × 10−4 ± 2.108 × 10−4 7.841 × 10−6 ± 1.073 × 10−5 1.642 × 10−5 ± 2.014 × 10−5

0.05 4.694 × 10−5 ± 9.315 × 10−5 7.038 × 10−6 ± 9.557 × 10−6 2.246 × 10−5 ± 4.717 × 10−5

0.01 1.162 × 10−5 ± 2.718 × 10−5 3.051 × 10−6 ± 5.374 × 10−6 1.955 × 10−6 ± 3.249 × 10−6

Table 5: Mean of MSEs for test set for Example 2.

Step size Number of iteration
(h) 1000 3000 5000

0.1 1.099 × 10−4 ± 1.961 × 10−4 7.576 × 10−6 ± 1.054 × 10−5 1.549 × 10−5 ± 1.878 × 10−5

0.05 4.493 × 10−5 ± 8.885 × 10−5 6.772 × 10−6 ± 9.184 × 10−6 2.150 × 10−5 ± 4.504 × 10−5

0.01 1.151 × 10−5 ± 2.692 × 10−5 3.022 × 10−6 ± 5.323 × 10−6 1.936 × 10−6 ± 3.218 × 10−6

Example 3. 
y′′(x) + 4y′(x)− 5y(x) = 0, x ∈ [0, 1],
y(0) = 1
y′(0) = −1

(16)

The exact solution of Second Order Homogenous Linear Differential Equation is

y =
1

6
(exp(−5x)− exp(x)).

The numerical solution of Eq. (16) is seen in Fig. 5 after 1000 iterations with step size h = 0.1.
Furthermore, the best cost function value obtained by GSA is given in Fig. 6.

The mean of MSEs with standard deviation is given in Table 6 for training set and in Table
7 for test set for different step size.

Table 6: Mean of MSEs for training set for Example 3.

Step size Number of iteration
(h) 1000 3000 5000

0.1 2.133 × 10−5 ± 2.498 × 10−5 2.958 × 10−6 ± 4.835 × 10−5 3.695 × 10−6 ± 4.705 × 10−6

0.05 2.448 × 10−6 ± 4.040 × 10−6 5.261 × 10−6 ± 7.000 × 10−6 3.667 × 10−7 ± 3.070 × 10−7

0.01 1.903 × 10−6 ± 4.083 × 10−6 1.909 × 10−8 ± 1.737 × 10−8 5.258 × 10−9 ± 5.823 × 10−9

239



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.4, N.3, 2019

Table 7: Mean of MSEs for test set for Example 3.

Step size Number of iteration
(h) 1000 3000 5000

0.1 2.178 × 10−5 ± 2.563 × 10−5 3.006 × 10−6 ± 4.905 × 10−6 3.760 × 10−6 ± 4.795 × 10−6

0.05 2.488 × 10−6 ± 4.137 × 10−6 5.330 × 10−6 ± 7.118 × 10−6 3.717 × 10−7 ± 3.166 × 10−7

0.01 1.920 × 10−6 ± 4.121 × 10−6 1.902 × 10−8 ± 1.729 × 10−8 5.245 × 10−9 ± 5.795 × 10−7

5 Conclusion

In this paper, we get the numerical solution of IVPs with utilizing feed forward neural network
trained by Gravitational Search Algorithm. We solve three types of ODEs including first and
second order. In the experiments, for the first order ODEs, the neural network approximated
solution is quite close the exact solution. For the second order ODEs, we obtain more acceptable
result with proposed approach rather than the other numerical methods as Euler and RK4. In
all experiments, we get the decreasing cost function value independent from the step size.

The classical numerical methods as Euler and RK4 gives the solution at the quadrature
nodes in the interval. However, neural networks are trained using the quadrature nodes and
give the solution at any points in the interval. In other words, the advantage of our approach is
to obtain the solution without depending on step size.

For the future work, the different types of differential equations will be solved by feed forward
neural networks including nonlinear ODEs. The other work will be about solving linear and
nonlinear ODEs with another ANNs method. Furthermore, some global optimization techniques
will be investigated for obtaining better solutions.

6 Acknowledgement

The research has been supported by the Council of Higher Education in Turkey (YÖK), Coor-
dination of Academic Member Training Program (ÖYP) in Adnan Menderes University, under
Grant no. ADÜ-ÖYP-14011.

References

Weinan, E., Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential equa-
tions. Communications in Mathematics and Statistics, 5 (4), 349-380.

Fojdl, J., Brause, R.W. (2008, November). The performance of approximating ordinary differ-
ential equations by neural nets. In 2008 20th IEEE International Conference on Tools with
Artificial Intelligence (Vol. 2, pp. 457-464). IEEE.

Kumar, M. & Yadav, N.(2011). Multilayer perceptrons and radial basis function network meth-
ods for the solution of differential equations: A survey. Computer and Mathematics with
Applications, 62(10), 3796 - 3811.

Lee, H., Kang I.S. (1990). Neural algorithms for solving differential equations, Journal of Com-
putational Physics, 91, 110-131.

Li-ying, X., Hui, W., & Zhe-zhao, Z. (2007, May). The algorithm of neural networks on the
initial value problems in ordinary differential equations. In 2007 2nd IEEE Conference on
Industrial Electronics and Applications (pp. 813-816). IEEE.

Malek, A., Beidokhti, R.S. (2006). Numerical solution for high order differential equations using
a hybrid neural network-optimization method. Applied Mathematics and Computation, 183(1),
260-271.

240



K. GÜNEL, İ. GÖR: GSA SOLUTIONS OF IVPs FOR ODEs

Myneni, S., Patel, V.L. (2010). Chebyshev Neural Network based model for solving Lane-Emden
type equations. Applied Mathematics and Computation , 247, 100-114.

Mall, S., Chakraverty S. (2015). Numerical solution of nonlinear singular initial value prob. of
Emden-Fowler type using Chebyshev Neural Network method Neurocomputing, 149, 975-982.

Mall, S., Chakraverty, S. (2016). Application of Legendre Neural Network for solving ordinary
differential equations, Applied Soft Computing. International Journal of Information Man-
agement, 43, 347-356.

Meade, A.J., Fernandez, A.A. (1994). The numerical solution of linear ordinary differential
equations by feedforward neural networks. Mathematical and Computer Modelling, 19(12),
1-25.

Otadi, M., Mosleh, M. (2011). Numerical solution of quadratic Riccati differential equation by
neural network. Mathematical Sciences , 5(3), 249-257.

Pakdaman, M., Ahmadian, A., Effati, S., Salahshour, S. & Baleanu, D. (2017). Solving differen-
tial equations of fractional order using an optimization technique based on training artificial
neural network. Applied Mathematics and Computation, 293, 81-95.

Qu, H. (2017). Cosine Radial Basis Function Neural Networks for Solving Fractional Differential
Equations. Advances in Applied Mathematics and Mechanics, 9(3), 667-679.

Raja, M.A.Z. (2014). Numerical treatment for boundary value problems Pantograph functional
differential equation using computational intelligence algorithms.Applied Soft Computing, 24,
806 - 821.

Raja, M.A.Z., Ahmad, S. (2014). Numerical treatment for solving one-dimensional Bratu prob-
lem using neural networks. Neural Computing and Applications , 24(3), 49-561.

Raja, M.A.Z., Ahmad, S. & Raza, S.(2014). Solution of the 2-dimensional Bratu problem using
neural network, swarm intelligence and sequential quadratic programming. Neural Computing
and Applications, 25(7-8), 1723-1739.

Raja, M.A.Z. (2014). Stochastic numerical treatment for solving Troesch’s problem. Information
Sciences, 279(3), 860-873.

Raja, M.A.Z., Samar, R., Manzar, M.A. & Shah, S.M. (2017). Design of unsupervised fractional
neural network model optimized with interior point algorithm for solving Bagley-Torvik equa-
tion. International Journal of Information Management, 132, 139-158.

Rashedi, E., Nezamabadai-pour, H. & Saryazdi, S., GSA: A Gravitational Search Algorithm,
Information Sciences. Information Sciences, 179(13), 2232-2248.

Rudd, K. Muro, G. D. & Ferrari, S. (2014), A Constrained Backpropagation Approach for
the Adaptive Solution of Partial Differential Equations. International Journal of Information
Management, 25(3), 571-584.

Rudd, K., Ferrari, S. (2015). A constrained integration (CINT) approach to solving partial
differential equations using artificial neural networks. Neurocomputing, 155, 277-285.

Sinchev, B., Sibanbayeva, S.E., Mukhanova,A.M., Nurgulzhanova, A.N., Zaurbekov, N.S., Iman-
bayev, K.S., Gagarina, N.L. & Baibolova,L.K. (2018). Some methods of training radial basis
neural networks in solving the Navier-Stokes equations. International Journal for Numerical
Methods in Fluids., 86(10), 625-636.

241



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.4, N.3, 2019

Zjavka, L., Pedrycz, W. (2016). Constructing general partial differential equations using poly-
nomial and neural networks. Neural Networks, 70, 58-69.

Zúñiga-Aguilar, C.J., Romero-Ugalde, H.M., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F. &
Valtierra-Rodŕıguez, M. (2017) Solving fractional differential equations of variable-order in-
volving operators with Mittag-Leffler kernel using artificial neural networks. Chaos, Solitons
& Fractals., 103, 382-403.

242


